Flow dynamics in anatomical models of abdominal aortic aneurysms: computational analysis of pulsatile flow.
نویسندگان
چکیده
Blood flow in human arteries is dominated by time-dependent transport phenomena. In particular, in the abdominal segment of the aorta under a patient's average resting conditions, blood exhibits laminar flow patterns that are influenced by secondary flows induced by adjacent branches and in irregular vessel geometries. The flow dynamics becomes more complex when there is a pathological condition that causes changes in the normal structural composition of the vessel wall, for example, in the presence of an aneurysm. An aneurysm is an irreversible dilation of a blood vessel accompanied by weakening of the vessel wall. This work examines the importance of hemodynamics in the characterization of pulsatile blood flow patterns in individual Abdominal Aortic Aneurysm (AAA) models. These patient-specific computational models have been developed for the numerical simulation of the momentum transport equations utilizing the Finite Element Method (FEM) for the spatial and temporal discretization. We characterize pulsatile flow dynamics in AAAs for average resting conditions by means of identifying regions of disturbed flow and quantifying the disturbance by evaluating wall pressure and wall shear stresses at the aneurysm wall.
منابع مشابه
The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions.
In the abdominal segment of the human aorta under a patient's average resting conditions, pulsatile blood flow exhibits complex laminar patterns with secondary flows induced by adjacent branches and irregular vessel geometries. The flow dynamics becomes more complex when there is a pathological condition that causes changes in the normal structural composition of the vessel wall, for example, i...
متن کاملBlood flow in abdominal aortic aneurysms: pulsatile flow hemodynamics.
Numerical predictions of blood flow patterns and hemodynamic stresses in Abdominal Aortic Aneurysms (AAAs) are performed in a two-aneurysm, axisymmetric, rigid wall model using the spectral element method. Physiologically realistic aortic blood flow is simulated under pulsatile conditions for the range of time-averaged Reynolds numbers 50< or =Re(m)< or =300, corresponding to a range of peak Re...
متن کاملStudy of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction
Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...
متن کاملEffect of six non-Newtonian viscosity models on hemodynamic parameters of pulsatile blood flow in stenosed artery
A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with non-Newtonian models using ADINA. Blood flow was considered laminar, and the arterial wall was considered rigid. Studied stenosis severities were 30, 50, and 70% of the cross-section...
متن کاملComputational Analysis of Blood Flow Characteristics in an Aortic System with Abdominal and Left Common Iliac Aneurysm Pre- and Post-Stent Grafting
The aim of this study was to demonstrate how fluid dynamic parameters are affected by aortic geometry and flow condition in two cases. Case A included blood flow analysis in aortic system with abdominal aortic aneurysm and left common iliac aneurysm before stent graft placement, while in case B was included stent graft geometry, at the site of the aneurysms. An individual patient-specific geome...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta cientifica venezolana
دوره 54 1 شماره
صفحات -
تاریخ انتشار 2003